Recurrent paralogy in the evolution of archaeal chaperonins
نویسندگان
چکیده
Chaperonins are multisubunit double-ring complexes that mediate the folding of nascent proteins [1] [2]. In bacteria, chaperonins are homo-oligomeric and are composed of seven-membered rings. Eukaryotic and most archaeal chaperonin rings are eight-membered and exhibit varying degrees of hetero-oligomerism [3] [4]. We have cloned and sequenced seven new genes encoding chaperonin subunits from the crenarchaeotes Sulfolobus solfataricus, S. acidocaldarius, S. shibatae and Desulfurococcus mobilis. Although some archaeal genomes possess a single chaperonin gene, most have two. We describe a third chaperonin-encoding gene (TF55-gamma) from two Sulfolobus species; phylogenetic analyses indicate that the gene duplication producing TF55-gamma occurred within crenarchaeal evolution. The presence of TF55-gamma in Sulfolobus correlates with their unique nine-membered chaperonin rings. Duplicate genes (paralogs) for chaperonins within archaeal genomes very often resemble each other more than they resemble chaperonin genes from other archaea. Our phylogenetic analyses suggest multiple independent gene duplications - at least seven among the archaea examined. The persistence of paralogous genes for chaperonin subunits in multiple archaeal lineages may involve a process of co-evolution, where chaperonin subunit heterogeneity changes independently of selection on function.
منابع مشابه
Gene duplication and the evolution of group II chaperonins: implications for structure and function.
Chaperonins are multisubunit protein-folding assemblies. They are composed of two distinct structural classes, which also have a characteristic phylogenetic distribution. Group I chaperonins (called GroEL/cpn60/hsp60) are present in Bacteria and eukaryotic organelles while group II chaperonins are found in Archaea (called the thermosome or TF55) and the cytoplasm of eukaryotes (called CCT or Tr...
متن کاملStructure of the Substrate Binding Domain of the Thermosome, an Archaeal Group II Chaperonin
The crystal structure of the substrate binding domain of the thermosome, the archaeal group II chaperonin, has been determined at 2.3 A resolution. The core resembles the apical domain of GroEL but lacks the hydrophobic residues implied in binding of substrates to group I chaperonins. Rather, a large hydrophobic surface patch is found in a novel helix-turn-helix motif, which is characteristic o...
متن کاملChaperones and protein folding in the archaea.
A survey of archaeal genomes for the presence of homologues of bacterial and eukaryotic chaperones reveals several interesting features. All archaea contain chaperonins, also known as Hsp60s (where Hsp is heat-shock protein). These are more similar to the type II chaperonins found in the eukaryotic cytosol than to the type I chaperonins found in bacteria, mitochondria and chloroplasts, although...
متن کاملReplacement of GroEL in Escherichia coli by the Group II Chaperonin from the Archaeon Methanococcus maripaludis
UNLABELLED Chaperonins are required for correct folding of many proteins. They exist in two phylogenetic groups: group I, found in bacteria and eukaryotic organelles, and group II, found in archaea and eukaryotic cytoplasm. The two groups, while homologous, differ significantly in structure and mechanism. The evolution of group II chaperonins has been proposed to have been crucial in enabling t...
متن کاملMtGimC, a novel archaeal chaperone related to the eukaryotic chaperonin cofactor GimC/prefoldin.
Group II chaperonins in the eukaryotic and archaeal cytosol assist in protein folding independently of the GroES-like cofactors of eubacterial group I chaperonins. Recently, the eukaryotic chaperonin was shown to cooperate with the hetero-oligomeric protein complex GimC (prefoldin) in folding actin and tubulins. Here we report the characterization of the first archaeal homologue of GimC, from M...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Current Biology
دوره 9 شماره
صفحات -
تاریخ انتشار 1999